Cosmology of the de Sitter Horndeski Models

Nelson Nunes

Instituto de Astrofísica e Ciências do Espaço

in collaboration with: P. Martin-Moruno, and F. Lobo, arXiv:1505.06585, 1502.05878, 1502.03236, 1506.02497

EXPL/FIS-AST/1608/2013, UID/FIS/04434/2013 IF/00852/2015

The Horndeski Lagrangian

$$\mathcal{L} = \frac{R}{2} + \sum_{i} \mathcal{L}_{i} + \mathcal{L}_{m}$$

It is the most general scalar field theory in 4D with second order equations of motion

$$\mathcal{L}_{2} = K(\phi, X)$$

$$\mathcal{L}_{3} = -G_{3}(\phi, X) \square \phi$$

$$\mathcal{L}_{4} = G_{4}(\phi, X) R + G_{4,X} \left[(\square \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) \right]$$

$$\mathcal{L}_{5} = G_{5}(\phi, X) G_{\mu\nu} (\nabla^{\mu} \nabla^{\nu} \phi) - \frac{1}{6} G_{5,X} \left[(\square \phi)^{3} - 3(\square \phi) (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) + 2(\nabla^{\mu} \nabla_{\alpha} \phi) (\nabla^{\alpha} \nabla_{\beta} \phi) (\nabla^{\beta} \nabla_{\mu} \phi) \right]$$

Recipe for self-tuning Lagrangians, in concept

$$L(\phi, \dot{\phi}, a, \dot{a}) = a^3 \sum_{i=0}^{3} Z_i(\phi, \dot{\phi}, a) H^i$$

where H is Hubble rate

$$Z_i(\phi, \dot{\phi}, a) = X_i(\phi, \dot{\phi}) - \frac{k}{a^2} Y_i(\phi, \dot{\phi})$$

and X_i and Y_i are functions of the Horndeski or Deffayet free functions.

- The theory must admit "the vacuum" for any value of the cosmological constant;
- 2 This should remain true before and after the phase transition where the cosmological constant jumps instantaneously by a finite amount:
- The theory allows for a non-trivial cosmology.

Recipe for self-tuning Lagrangians, physically

We require that an abrupt change in the matter sector is absorbed by the scalar field leaving the vacuum unchanged.

- The field equation must be trivially satisfied at the critical point to allow the field to self-adjust $(L_{\rm cp}(a,\phi,\dot{\phi})=L_{\rm cp}(a));$
- ② At the critical point, the Hamiltonian must depend on $\dot{\phi}$ so that the continuous field can absorb discontinuities of the vacuum energy $(\mathcal{H} \propto \rho_{\rm vac} \Rightarrow \mathcal{H}_{\rm cp} \propto f(\dot{\phi}))$;
- **3** The scalar field equation of motion must depend on \dot{H} , such that the cosmological evolution is non-trivial before screening takes place $(\dot{\phi} \propto \dot{H})$.

Charmousis et al. 2011

Recipe for self-tuning Lagrangians, in equations

 $L_{\rm cp}(a,\phi,\dot{\phi}) = L_{\rm cp}(a);$

$$L_{\rm cp} = c(a) + \frac{1}{a^3} \dot{\zeta}(a, \phi)$$

$$\sum_{i=1}^{3} i Z_{i,\dot{\phi}} H^i \neq 0$$

 \bullet $\dot{\phi} \propto \dot{H}$

$$Z_{i,\dot{\phi}}H^i \neq 0$$

at least for one i.

Charmousis et al. 2011

The Fab 4

The Fab Four potentials (Charmousis $\it et~al.$) are indeed able to self-tune for $\it k=-1$

$$\begin{split} \mathcal{L}_{\mathrm{John}} &= V_{\mathrm{J}}(\phi)G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi, \\ \mathcal{L}_{\mathrm{Paul}} &= V_{\mathrm{P}}(\phi)P^{\mu\nu\alpha\beta}\nabla_{\mu}\nabla_{\alpha}\phi\nabla_{\nu}\nabla_{\beta}\phi, \\ \mathcal{L}_{\mathrm{George}} &= V_{\mathrm{G}}(\phi)R, \\ \mathcal{L}_{\mathrm{Ringo}} &= V_{\mathrm{R}}(\phi)G, \end{split}$$

- The cosmological models approach a patch of Minkowski with k=-1 when it is an attractor, and describe matter domination before that
- $V_{\rm J}, V_{\rm P} \sim$ "stiff fluid"; $V_{\rm G} \sim$ "radiation"; and $V_{\rm R} \sim$ "curvature".
- Unclear how to obtain a late time accelerated universe.

Extending the self tuning to a de Sitter vacuum

- Complete screening must not necessarily lead to Minkowski;
- If the field self-tunes to a de Sitter vacuum, the late time accelerated expansion can be naturally described by a dynamical approach to a stable critical point;
- Λ of the critical point is not determined by the $\rho_{\rm vac}$ of the matter field but is of purely gravitational origin.

Self tuning to a spatially flat de Sitter vacuum

At the critical point, $H_{\rm cp} = \sqrt{\Lambda}$.

The Lagrangian that at the critical point that satisfies all the constraints, i.e., $L_{\rm cp}(a,\phi,\dot{\phi})=L_{\rm cp}(a)$ and $\mathcal{H}_{\rm cp}\propto f(\dot{\phi})$, is

$$\mathcal{L}_{H}^{cp} = \sum_{i=0}^{3} X_{i}(\phi, \dot{\phi}) \Lambda^{i/2} = 3\sqrt{\Lambda} h(\phi) + \dot{\phi} h_{,\phi}(\phi)$$

Martin-Moruno, NJN, Lobo (2015)

Self tuning to a spatially flat de Sitter vacuum

$$\mathcal{L}_{\mathrm{H}}^{\mathrm{cp}} = \sum_{i=0}^{3} X_i(\phi, \dot{\phi}) \Lambda^{i/2} = 3\sqrt{\Lambda} h(\phi) + \dot{\phi} h_{,\phi}(\phi)$$

What are the $X_i(\phi,\dot{\phi})$?

 $lackbox{1}{\bullet} X_i$ are terms linear in $\dot{\phi}$

$$X_i = 3\sqrt{\Lambda}U_i(\phi) + \dot{\phi}W_i(\phi)$$

② X_i are terms with a non-linear dependence on $\dot{\phi}$ which contribution has to vanish at the critical point, i.e., $\mathcal{L}_{\rm H}^{\rm cp}=0$

I. Linear models

The linear Lagrangian

Considering also matter, the linear Lagrangian and Hamiltonian are

$$L = L_{\rm EH} + L_{\rm linear} + L_{\rm m}$$
 $\mathcal{H} = \mathcal{H}_{\rm EH} + \mathcal{H}_{\rm linear} + \mathcal{H}_{\rm m} = 0$

where

$$L_{\text{linear}} = a^3 \sum_{i} \left(3\sqrt{\Lambda} U_i(\phi) + \dot{\phi} W_i(\phi) \right) H^i$$

i=0,...,3, subject to the constraint at the critical point,

$$\sum_{i} W_{i}(\phi) \Lambda^{i/2} = \sum_{j} U_{j,\phi}(\phi) \Lambda^{j/2},$$

8 functions - 1 constraint = 7 free functions \Rightarrow Mag 7! W_i and U_i are related to the the κ_j functions of the Horndeski Lagrangian and G_j functions of the Deffayet et al. functions.

Equations of motion

Together they give respectively the field equation for H^\prime and the Friedmann equation

$$H' = 3 \frac{\sum_{i} H^{i} \left(\sqrt{\Lambda} U_{i,\phi}(\phi) - H W_{i}(\phi) \right)}{\sum_{i} i H^{i} W_{i}(\phi)}$$

$$\phi' = \sqrt{\Lambda} \frac{(1 - \Omega) H^{2} - 3 \sum_{i} (i - 1) H^{i} U_{i}(\phi)}{\sum_{i} i H^{i+1} W_{i}(\phi)}$$

Tripod model: Energy densities

Example for: $U_2 = e^{\lambda \phi} + \frac{4}{3}e^{\beta \phi}$ and $W_2 = \lambda e^{\lambda \phi} + \beta e^{\beta \phi}$.

II. Non-linear models

Non-linear Lagrangian

$$L_{\rm nl} = a^3 \sum_{i=0}^3 X_i(\phi, \dot{\phi}) H^i$$

To ensure that any non-linear dependence of the Lagrangian on ϕ to vanish at the critical point,

$$\sum_{i=0}^{3} X_i(\phi, \dot{\phi}) \Lambda^{i/2} = 0$$

Again, X_i are related to the the κ_j functions of the Horndeski Lagrangian and G_j functions of the Deffayet et al. functions.

Equations of motion

Proceed to shift-symmetric case and the redefinition $\psi=\dot{\phi}$

$$H' = \frac{3(1+w)Q_0P_1 - Q_1P_0}{Q_1P_2 - Q_2P_1}$$

$$\psi' = \frac{3(1+w)Q_0P_2 - Q_2P_0}{Q_2P_1 - Q_1P_2}$$

where Q_0 , Q_1 , Q_2 , P_0 , P_1 , P_2 , are complex functions of X_i and H, and the average equation of state parameter of matter fluids is

$$1 + w = \frac{\sum_{s} \Omega_s (1 + w_s)}{\sum_{s} \Omega_s}$$

With X_0 , X_1 and X_2

Considering

$$X_2(\psi) = \alpha \psi^n, \qquad X_1(\psi) = -\alpha \psi^n + \frac{\beta}{\psi^m}, \qquad X_0(\psi) = -\frac{\beta}{\psi^m}$$

4. Extension with X_0 , X_1 and X_2

Considering

$$X_2(\psi) = \alpha \psi^n, \qquad X_1(\psi) = -\alpha \psi^n + \frac{\beta}{\psi^m}, \qquad X_0(\psi) = -\frac{\beta}{\psi^m}$$

We can obtain a model with $w_{\psi}=w_0+w_a(1-a)$ s.t. $w_0=-0.98$ and $w_a=0.04$

Slotheonic Galileon

Consider the coupling

$$\frac{1}{2M_*^2}G^{\mu\nu}\partial_\mu\phi\partial_\nu\phi$$

Shown to have a tracking trajectory = "no matter what the initial conditions are, the field will asymptotically tend to that trajectory".

Germani and Martin-Moruno (2017)

More to do

- Need study of perturbations.
- Look for combination of linear and non-linear models?